Course Program "Data Analysis and Visualization using R (DAVuR)"

The program is an indication and by no means guaranteed to be exact! No class is ever the same.
All videos are in this Video channel Lessons usually contain some lecturing and some exercise. You are assumed to do the remaining exercises in your own time.

Session Topic Resources Exercises (see eBook)
1 Course intro
  • Video Course intro
  • -
    1 Toolbox
  • Video Setting up your system
  • Video RStudio
  • eBook Chapter 2
  • Presentation 1: Toolbox
  • Exercise 18.1.1: Install the tools
  • Exercise 18.2.1: Customize RStudio
  • 1 RMarkdown
  • Video RMarkdown
  • Exercise 18.2.2: Create an RMarkdown document of own resume
  • 1 Operators, vectors, functions, variables
  • Video Operators: %%, %/%, and %in%
  • eBook Chapter 3.1: Basic R; vectors, functions, variables
  • Exercise 18.3.1 - 18.3.3 (first): vectors, functions, variables
  • 1 Vectors in-depth
  • Video Creating vectors
  • Video Vector operations
  • Video Indexing vectors
  • eBook Chapter 3.1; vector creation methods
  • Exercise 18.3.4: Vectors
  • Exercise 18.4.3: Named vectors
  • 1 Coding style
  • Video Coding style
  • -
  • 2 Dataframes intro
  • Video Dataframes intro
  • Video Dataframes selections
  • eBook Chapter 4.3
  • Presentation 3: Complex Datatypes
  • Exercises 18.4.4, 18.4.6
  • 2 Plotting with ggplot
  • Video Plotting
  • eBook Chapter 5
  • Exercise 18.5.1 - 18.5.4: Plotting exercises
  • 3 Factors
  • Video Factors
  • eBook Chapter 4.1
  • Presentation 3: Complex Datatypes
  • Exercise 18.4.1: Creating factors
  • 3 Lists
  • Video Lists
  • eBook Chapter 4.2
  • Presentation 3: Complex Datatypes
  • Exercise 18.4.2: List actions
  • 3 Reading from file
  • Video File reading
  • eBook Chapter 4.3.1 and 4.3.2.
  • Presentation 3: Complex Datatypes
  • Exercises 18.4.4, 18.4.6, 18.4.7
  • 3 Various functions
  • Video The cut() function
  • Video Quantiles: quantile(), IQR() and summary()
  • eBook Chapter 6
  • Presentation 4: Functions
  • Exercises 18.6.1 - 18.6.2 the cut() and quantile() functions
  • 4 Flow control & Creating functions
  • Video if/else conditionals
  • Video Iteration with for
  • Video Creating functions
  • eBook Chapter 7
  • Presentation 5: Scripting
  • Exercises 18.7.1 - 18.7.2
  • 4 The tidyr package
  • eBook Chapter 8
  • Exercises 18.8.1 & 18.8.2
  • 5 Data mangling with base R
  • eBook Chapter 9: old-school data mangling
  • Video apply()
  • Video lapply()and sapply()
  • Presentation 6: Dataframe manipulations
  • Exercises 18.9.1 & 18.9.2
  • 5 Data mangling with dplyr
  • eBook Chapter 10: dplyr
  • Exercises 18.10.1 - 18.8.2
  • 6 Data mangling with dplyr
  • eBook Chapter 10: dplyr
  • Exercises 18.8.3
  • 6 ggplot revisited
  • eBook Chapter 12: dplyr
  • Exercises 18.12.1 - 18.12.2
  • 6 Exploratory data analysis
  • eBook Chapter 14: Exploratory Data Analysis 1
  • eBook Chapter 15: Exploratory Data Analysis 2
  • Exercises 18.12.1 - 18.12.2
  • 7 Pattern Matching (not part of all course variants)
  • Video Functions that use patterns
  • Video Defining Patterns: character classes
  • Video Defining Patterns: quantifiers and alternatives
  • eBook Chapter 6.6
  • Presentation 11: Text processing with regex
  • Exercises 18.11.1 - 18.11.3
  • Dataframe manipulations (extra material)
  • Video tapply()
  • Video split()
  • Video aggregate()
  • eBook Chapter 8.1.4 - 8.1.7
  • Presentation 6: Dataframe manipulations
  • Exercises 18.9.1 - 18.9.2